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Abstract

In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation

laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both

time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant

number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present prelim-

inary results for two-dimensional non-linear systems.
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1. Introduction

This paper is concerned with the construction of non-linear schemes of the ADER type for time-depend-

ent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. The ADER

approach was first put forward by Toro and collaborators [25], where the idea was illustrated for solving

the linear advection equation with constant coefficients. Formulations were given for one, two and three-
dimensional linear schemes on regular meshes and implementation of linear schemes of up to 10th order in

space and time for both the one-dimensional and the two-dimensional case were reported. We also mention

the work of Schwartzkopff et al. [14,15], where linear schemes of upto sixth order in space and time were
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constructed. These were then applied to acoustic problems and detailed comparison with other schemes was

carried out.

The extension of the ADER approach to non-linear problems relies on the solution of the generalised

Riemann problem. For non-linear systems, including source terms, this was presented in [26]. Construction

of ADER schemes for the one-dimensional Euler equations using this Riemann problem solution has been
reported in [19,27]. For the construction of schemes as applied to non-linear scalar equations in one-space

dimension see also [18]. Extension of ADER to scalar advection–diffusion–reaction equations in one-space

dimension is reported in [20], where explicit non-linear schemes of up to sixth order are presented.

As is well known from the theorem of Godunov [5], high-order linear schemes will generate spurious

oscillations near discontinuities or sharp gradients of the solution. These oscillations pollute the numerical

solution and are thus highly undesirable. To avoid generating spurious oscillations, non-linear solution-

adaptive schemes must be constructed. It appears as if it was Kolgan [10] who first proposed to suppress

spurious oscillations by applying the so-called principle of minimal values of derivatives, producing in this
manner a non-oscillatory (TVD) Godunov-type scheme of second-order spatial accuracy. Further, more

well-known, developments are due to van Leer [28,29]. In multiple-space dimensions unsplit second-order

non-oscillatory methods were constructed by Kolgan [11], Tiliaeva [17], Colella [4] and many others. Uni-

formly high-order extensions of these methods are represented by essentially non-oscillatory (ENO) [8,2]

and weighted essentially non-oscillatory (WENO) [12,7,1,9,16] schemes.

In one-space dimension non-linear (non-oscillatory) ADER schemes of up to fifth order of accuracy in

time and space have been presented in [25,19,27,18]. In two-space dimensions, however, the ADER ap-

proach has so far been limited to linear schemes and linear equations only [25,14,15] and therefore cannot
be used as such for computing discontinuous solutions. However, we are aware of work in progress by Kae-

ser (private communication) for the two dimensional non-linear scalar case. We also remark that no three-

dimensional ADER schemes, either linear or non-linear, have yet been presented.

The motivation of this paper is threefold. First, we carry out the construction of non-linear ADER

schemes in two- and three-space dimensions. These schemes generalize linear two-dimensional ADER

schemes developed [25,14,15]. Second, we extend the ADER approach to non-linear scalar conservation

laws with reactive-like source terms in two- and three-space dimensions thus extending non-linear one-

dimensional ADER schemes of [19,27,18,20] to multiple-space dimensions.
We present numerical examples for schemes of up to fifth order of accuracy in both time and space, which

illustrate that the schemes indeed retain the designed order of accuracy in all space dimensions and produce

essentially non-oscillatory results for solutions with discontinuities. This should be compared with the state-

of-the art weighted essentially non-oscillatory (WENO) schemes [7,1,16] and Runge–Kutta discontinuous

Galerkin finite element methods [3], which generally achieve only third order of time accuracy if non-linear,

non-oscillatory methods are to be used.

Finally, we include some preliminary results on the extension of the method to non-linear two-dimen-

sional systems of conservation laws.
The rest of the paper is organized as follows. In Section 2 we review the ADER approach in one-space

dimension as applied to advection–reaction equations. Extension to three-space dimensions is carried out in

Section 3. Numerical examples are provided in Section 4. In Section 5 we present preliminary results on the

extension of the method to non-linear multidimensional systems. Conclusions are drawn in Section 5.
2. Review of ADER schemes in one-space dimension

Consider the following one-dimensional nonlinear advection–reaction equation:
otqþ oxf ðqÞ ¼ sðx; t; qÞ; ð1Þ
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where q(x, t) is the unknown conservative variable, f(q) is the physical flux and s(x, t,q) is a source term.

Integration of (1) over the control volume in x–t space Ii · Dt, Ii = [xi� 1/2,xi+1/2], of dimensions Dx =

xi+1/2 � xi� 1/2, Dt = tn+1 � tn, gives
qnþ1
i ¼ qni þ

Dt
Dx

fi�1=2 � fiþ1=2

� �
þ Dt si; ð2Þ
where qni is the cell average of the solution at time level tn, fi+1/2 is the time average of the physical flux at

cell interface xi+1/2 and si is the time–space average of the source term over the control volume:
qni ¼
1

Dx

Z xiþ1=2

xi�1=2

qðx; tnÞdx; f iþ1=2 ¼
1

Dt

Z tnþ1

tn
f ðqðxiþ1=2; sÞÞds;

si ¼
1

Dt
1

Dx

Z tnþ1

tn

Z xiþ1=2

xi�1=2

sðx; s; qðx; sÞÞdxds:
ð3Þ
Eq. (2) involving the integral averages (3) is upto this point an exact relation, but can be used to con-

struct numerical methods to compute approximate solutions to (1). This is done by subdividing the domain

of interest into many disjoint control volumes and by defining approximations to the flux integrals, called

numerical fluxes, and to the source integral, called numerical source. Let us denote the approximations to

these integrals by the same symbols fiþ1=2 and si in (3). Then formula (2) is a conservative one-step scheme

to solve (1).

The ADER approach defines numerical fluxes and numerical sources in such a way that the explicit con-
servative one-step formula (2) computes numerical solutions to (1) to arbitrarily high order of accuracy in

both space and time. The approach consists of three steps: (i) reconstruction of pointwise values from cell

averages, (ii) solution of a generalized Riemann problem at the cell interface and evaluation of the intercell

flux fi+1/2 and (iii) evaluation of the numerical source term si by integrating a time–space Taylor expansion

of the solution inside the cell.

The pointwise values of the solution at t = tn are reconstructed from cell averages by means of high-order

polynomials. To avoid spurious oscillations ENO [8] or WENO [12,7] reconstruction can be used, leading

to non-linear schemes. In general, WENO reconstruction produces more accurate results and therefore it is
used in the design of our schemes. By means of the reconstruction step the conservative variable is repre-

sented by polynomials pi(x) in each cell Ii. At each cell interface we then have the following generalized Rie-

mann problem:
otqþ oxf ðqÞ ¼ sðx; t; qÞ;

qðx; 0Þ ¼
qLðxÞ ¼ piðxÞ; x < xiþ1=2;

qRðxÞ ¼ piþ1ðxÞ; x > xiþ1=2:

� ð4Þ
This generalisation of the Riemann problem is twofold: (i) the governing equations include non-linear

advection as well as reaction terms and (ii) the initial condition consists of two reconstruction polynomials

of (r � 1)th order for a scheme of rth order of accuracy. By the order of accuracy we mean the convergence

rate of the scheme when the mesh is refined with a fixed Courant number.

We find an approximate solution for the interface state q(xi+1/2,s), where s is local time s = t � tn, using

a semi-analytical method [26]. The method gives the solution at x = xi+1/2 at a time s, assumed to be suf-
ficiently small, in terms of solutions of a sequence of conventional Riemann problems for homogeneous

advection equations. First, we write a Taylor expansion of the interface state in time:
qðxiþ1=2; sÞ ¼ qðxiþ1=2; 0þÞ þ
Xr�1

oðkÞt qðxiþ1=2; 0þÞ
h i sk

k!
; oðkÞt qðx; tÞ ¼ ok

otk
qðx; tÞ; ð5Þ
k¼1
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where 0þ � limt!0þt. The leading term q(xi+1/2,0+) accounts for the interaction of the boundary extrapo-

lated values qL(xi+1/2) and qR(xi+1/2) and is the self-similar solution of the conventional Riemann problem

with the piecewise constant data:
otqþ oxf ðqÞ ¼ 0;

qðx; 0Þ ¼
qLðxiþ1=2Þ if x < xiþ1=2;

qRðxiþ1=2Þ if x > xiþ1=2;

� ð6Þ
evaluated at (x�xi+1/2)/t = 0. We call q(xi+1/2, 0+) the Godunov state [5]. Next, to compute the remaining

terms, we replace all time derivatives by spatial derivatives using Eq. (1) by means of the Cauchy–Kowa-

lewski procedure. This procedure can be easily carried out with the aid of algebraic manipulators, such as

MAPLE or Mathematica. For example, for the model inviscid reactive Burgers� equation
qt þ
1

2
q2

� �
x

¼ Aq; A ¼ constant; ð7Þ
the Cauchy–Kowalewski procedure yields the following expressions for time derivatives:
qt ¼ �qqx þ Aq;

qtt ¼ 2qq2x � 3qxAqþ q2qxx þ A2q
ð8Þ
and so on. Expressions (8) contain unknown (sought) spatial derivatives of the solution
qðkÞ � ok

oxk
q; qð1Þ � qx; qð2Þ � qxx; qð3Þ � qxxx; . . .
at cell interface position xi+1/2 and time s = 0. It can be shown that by differentiating the governing equa-

tion with respect to x we can obtain evolution equations for each q(k). Generally, these evolution equations
are non-linear and inhomogeneous: for a fixed k > 0 the source terms depend on lower-order derivatives

q(k�1) and q(k�2), etc. For each k we then pose a generalized Riemann problem with initial conditions ob-

tained by taking appropriate derivatives of qL(x),qR(x) with respect to x; we call these problems derivative

Riemann problems [25]. Because we only need the Godunov state of these derivative Riemann problems we

can replace them by the following linear, homogeneous conventional Riemann problem:
otqðkÞ þ kiþ1=2oxqðkÞ ¼ 0; kiþ1=2 ¼
of ðqÞ
oq

ðqðxiþ1=2; 0þÞÞ;

qðkÞðx; 0Þ ¼
o
ðkÞ
x qLðxiþ1=2Þ; x < xiþ1=2;

o
ðkÞ
x qRðxiþ1=2Þ; x > xiþ1=2;

8><
>:

k ¼ 1; . . . ; r � 1:

ð9Þ
Having found the solution at x = xi+1/2 of all these derivative Riemann problems we substitute them into

Taylor expansion (5) and obtain an approximate solution qi+1/2(s):
qiþ1=2ðsÞ ¼ a0 þ a1sþ a2s2 þ � � � þ ar�1s
r�1; 06 s6Dt; ai ¼ constant; ð10Þ
which approximates the interface state q(xi+1/2,s) to the rth order of accuracy
qiþ1=2ðsÞ ¼ qðxiþ1=2; sÞ þOðsrÞ; 06 s6Dt: ð11Þ
Two options exist to evaluate the numerical flux. The first option is the state-expansion ADER [19], in

which an appropriate rth-order accurate Gaussian rule is used to evaluate the numerical flux
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f̂ iþ1=2 ¼
XN
a¼0

f ðqiþ1=2ðcaDtÞÞKa; ð12Þ
where cj and Ka are properly scaled nodes and weights of the rule and N is the number of nodes.
The second option to evaluate the numerical flux is the flux-expansion ADER [27,18], in which we seek

Taylor time expansion of the physical flux at xi+1/2:
f ðxiþ1=2; sÞ ¼ f ðxiþ1=2; 0þÞ þ
Xr�1

k¼1

oðkÞt f ðxiþ1=2; 0þÞ
h i sk

k!
: ð13Þ
From (13) and the second equation in (3) the numerical flux is now given by
fiþ1=2 ¼ f ðxiþ1=2; 0þÞ þ
Xr�1

k¼1

o
ðkÞ
t f ðxiþ1=2; 0þÞ

h i Dtk

ðk þ 1Þ! : ð14Þ
The leading term f(xi+1/2,0+) accounts for the first-instant interaction of left and right boundary extrapo-
lated values and is computed from (6) using a monotone flux, such as Godunov�s first-order upwind flux.

Following [27], the remaining higher-order time derivatives of the flux in (14) are expressed via time deriv-

atives of the intercell state qi+1/2(s):
o

ot
f ¼ of

oq
o

ot
q;

o2

ot2
f ¼ o2f

oq2
o

ot
q

� �2

þ of
oq

o2

ot2
q; ð15Þ
where from (10)
o

ot
q ¼ a1;

o2

ot2
q ¼ a2; ð16Þ
and so on. No numerical quadrature is then required to compute the numerical flux.

An improvement of the flux-expansion ADER approach is the so-called ADER-TVD approach [27]. In

ADER-TVD schemes all terms in the flux expansion (14) are computed not as a first-order upwind flux, but

as a second-order TVD flux with a compressive limiter, such as the flux of the weighted average flux scheme

[22,23].

Now we deal with the treatment of the source term. The first step in the evaluation of the numerical

source term sni in (3) is to discretize the space integral by means of a N-point Gaussian rule [20]
si ¼
XN
a¼1

1

Dt

Z tnþ1

tn
sðxa; s; qðxa; sÞÞds

 !
Ka; ð17Þ
where Ka are the scaled weights of the rule, xa are the Gaussian integration points and N is the total number
of points in the rule.

Next for each Gaussian point xa (which are different from xi±1/2) we reconstruct values of q and its spa-

tial derivatives by means of the WENO reconstruction, write the time Taylor expansion of the form (5) and

perform the Cauchy–Kowalewski procedure to replace all time derivatives by spatial derivatives. As a result

we obtain high-order approximations to q(xa,s), a = 1, . . . , N of the form (10). Finally, the time integration

in (17) is carried out by means of a Gaussian quadrature
si ¼
XN
a¼1

XN
l¼1

sðxa; sl; qðxa; slÞÞKl

 !
Ka: ð18Þ
The solution is advanced by one time step by updating the cell averages of the solution according to the

one-step formula (2).
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Remark: We note that for one-dimensional homogeneous non-linear systems the ADER approach has

some similarities with finite volume ENO schemes of Harten et al. [8] in that both methods use the Cau-

chy–Kowalewski procedure to convert spatial derivatives into temporal derivatives. The key difference be-

tween methods lies in how time accuracy is preserved. We refer the reader to [19] for a more detailed

comparison.
3. Three-space dimensions

Consider the following three-dimensional nonlinear advection–reaction equation:
otqþ oxf ðqÞ þ oygðqÞ þ ozhðqÞ ¼ sðx; y; z; t; qÞ: ð19Þ

Integration of (19) over the control volume Iijk · Dt, with
I ijk ¼ ½xi�1=2; xiþ1=2� � ½yj�1=2; yjþ1=2� � ½zk�1=2; zkþ1=2�;
of dimensions
Dx ¼ xiþ1=2 � xi�1=2; Dy ¼ yjþ1=2 � yj�1=2; Dz ¼ zkþ1=2 � zk�1=2; Dt ¼ tnþ1 � tn;
gives
qnþ1
ijk ¼ qnijk þ

Dt
Dx

ðfi�1=2;jk � fiþ1=2;jkÞ þ
Dt
Dy

ðgi;j�1=2;k � gi;jþ1=2;kÞ þ
Dt
Dz

ðhij;k�1=2 � hij;kþ1=2Þ þ Dt sijk; ð20Þ
where qnijk, fi+1/2, jk, gi, j+1/2, k, hij, k+1/2 and sijk are given by
qnijk ¼
1

Dx
1

Dy
1

Dz

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z yjþ1=2

yj�1=2

qðx; y; z; tnÞdzdy dx; ð21Þ

fiþ1=2;j;k ¼
1

Dt
1

Dy
1

Dz

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

Z tnþ1

tn
f ðqðxiþ1=2; y; z; sÞÞdsdzdy;

gi;jþ1=2;k ¼
1

Dt
1

Dx
1

Dz

Z xiþ1=2

xi�1=2

Z zkþ1=2

zk�1=2

Z tnþ1

tn
gðqðx; yiþ1=2; z; sÞÞdsdzdx; ð22Þ

hij;kþ1=2 ¼
1

Dt
1

Dx
1

Dy

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z tnþ1

tn
hðqðx; y; ziþ1=2; sÞÞdsdy dx;

sijk ¼
1

Dt
1

Dx
1

Dy
1

Dz

Z tnþ1

tn

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

sðx; y; z; t; qÞdzdy dxdt: ð23Þ
The procedure to evaluate the numerical flux in three-space dimensions consists of three main steps. We
concentrate on fi+1/2, jk; the expressions for gi, j+1/2,k, hij,k+1/2 are obtained in an entirely analogous manner.

First we discretize the spatial integrals over the cell faces in (22) using a tensor product of a suitable Gaus-

sian numerical quadrature. The expression for the numerical flux in the x coordinate direction then reads
fiþ1=2;jk ¼
XN
a¼1

XN
b¼1

1

Dt

Z tnþ1

tn
f ðqðxiþ1=2; ya; zb; sÞÞds

 !
KbKa; ð24Þ
where ya, zb are the integration points over the cell face [xi�1/2,xi+1/2] · [yj�1/2,yj+1/2] and Ka, Kb are the

weights. Next we reconstruct the pointwise values of the solution from cell averages to high order of
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accuracy at the Gaussian integration points (xi+1/2,ya,zb), including all derivatives up to order r � 1 for the

scheme of rth order of accuracy. In this paper we use the so-called dimension-by-dimension reconstruction

which is explained in [2,16] in the context of the two-dimensional ENO and WENO schemes. Reconstruc-

tion in three-space dimensions is a straightforward generalization of the two-dimensional algorithm and

consists of three one-dimensional sweeps [21]. First we perform a one-dimensional WENO sweep in the
x direction (normal to the face) and obtain left and right y–z averages of q and its x derivatives. Then

we perform the one-dimensional sweep in y direction to obtain z averages of q and its mixed x–y derivatives

for Gaussian integration points in y direction. Finally, we obtain the sought pointwise values by performing

the one-dimensional WENO sweep in z direction. See [21] for more details.

After the reconstruction is carried out for each Gaussian integration point (ya,zb) at the cell face we

pose the generalized Riemann problem (4) in the x-coordinate direction (normal to the cell boundary)

and obtain a high-order approximation to q(xi+1/2,ya,zb,s). All steps of the solution procedure remain

essentially as in the one-dimensional case. First, we write a Taylor series expansion in time for the
solution
qðxiþ1=2; ya; zb; sÞ ¼ qðxiþ1=2; ya; zb; 0þÞ þ
Xr�1

k¼1

½oðkÞt qðxiþ1=2; ya; zb; 0þÞ� s
k

k!
: ð25Þ
The leading term q(xi+1/2,ya,zb, 0+) is the self-similar solution of the conventional Riemann problem
otqþ oxf ðqÞ ¼ 0;

qðx; 0Þ ¼
qLðxiþ1=2; ya; zbÞ if x < xiþ1=2;

qRðxiþ1=2; ya; zbÞ if x > xiþ1=2;

� ð26Þ
evaluated at (x � xi+1/2)/t = 0. Next, we replace all time derivatives by space derivatives using (19) by

means of the Cauchy–Kowalewski procedure which will now involve mixed x, y and z derivatives up to
order r � 1. For example, for the inviscid reactive Burgers� equation
qt þ
1

2
q2

� �
x

þ 1

2
q2

� �
y

þ 1

2
q2

� �
z

¼ Aq; ð27Þ
the Cauchy–Kowalewski procedure yields the following expressions for time derivatives:
qt ¼ �qqx � qqy � qqz þ Aq;

qtt ¼ qxqqz þ 2qq2x þ q2qxx þ 2q2qxy þ 2q2qxzþ 2qq2y þ q2qyy þ 2q2qyz

þ 2qq2z þ q2qzz þ A2q� 3qx Aqþ 4qy qqz � 3qz Aqþ 4qx qqy � 3qy Aq;

ð28Þ
and so on. The expressions in (28) contain space derivatives of the solution
qðk1;k2;k3Þ ¼ ok1þk2þk3

oxk1oyk2ozk3
q; qð1;0;0Þ � qx; qð0;1;0Þ � qy ; qð0;0;1Þ � qz; . . . ð29Þ
It can be shown that all qðk1;k2;k3Þ obey inhomogeneous evolution equations, which are obtained by taking

spatial derivatives of the governing equation. Then all qðk1;k2;k3Þ can be computed as the Godunov states of

the following linear, derivative Riemann problems:
otqðk1;k2;k3Þ þ kiþ1=2;ab oxqðk1;k2;k3Þ ¼ 0; kiþ1=2;ab ¼
of ðqÞ
oq

ðqðxiþ1=2; ya; zb; 0þÞÞ;

qðk1;k1;k3Þðx; 0Þ ¼
ok1þk2þk3

oxk1 oyk2ozk3
qLðxiþ1=2; ya; zbÞ; x < xiþ1=2;

ok1þk2þk3

oxk1 oyk2ozk3
qRðxiþ1=2; ya; zbÞ; x > xiþ1=2:

8<
:

ð30Þ
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Here, the initial conditions
ok1þk2þk3

oxk1oyk2ozz3
qLðxiþ1=2; ya; zbÞ;

ok1þk2þk3

oxk1oyk2ozz3
qRðxiþ1=2; ya; zbÞ
are left and right reconstructed pointwise values of derivatives. After solving (30) for

1 6 k1 + k2 + k3 6 r � 1 we substitute qðk1;k2;k3Þ into the Taylor expansion (25) and form a polynomial

qi + 1/2, a,b(s):
qiþ1=2;a;bðsÞ ¼ c0 þ c1sþ c2s2 þ � � � þ cr�1s
r�1; 06 s6Dt; ci ¼ constant; ð31Þ
which approximates the interface state q(xi+1/2,ya,zb,s) at the Gaussian integration point (xi+1/2,ya,zb) to

rth order of accuracy.

The flux of the state-expansion ADER scheme is given by
fiþ1=2;jk ¼
XN
a¼1

XN
b¼1

XN
l¼1

f ðqðxiþ1=2; ya; zb; slÞÞKl

 !
KbKa: ð32Þ
For the flux expansion ADER schemes we write Taylor time expansion of the physical flux at each point

(xi+1/2,ya,zb):
f ðxiþ1=2; ya; zb; sÞ ¼ f ðxiþ1=2; ya; zb; 0þÞ þ
Xr�1

k¼1

oðkÞt f ðxiþ1=2; ya; zb; 0þÞ
h i sk

k!
: ð33Þ
Similar to the one-dimensional case, the leading term f(xi+1/2,ya,zb, 0+) is computed from (26) using a mon-

otone flux, such as Godunov�s first-order upwind flux. The remaining higher-order time derivatives of the

flux in (33) are expressed via time derivatives of the intercell state qi + 1/2,a,b(s). These time derivatives are

computed from Taylor expansion (31). The numerical flux is then given by
fiþ1=2;jk ¼
XN
a¼1

XN
b¼1

f ðxiþ1=2; ya; zb; 0þÞ þ
Xr�1

k¼1

oðkÞt f ðxiþ1=2; ya; zb; 0þÞ
h i Dtk

ðk þ 1Þ!

 !
KaKb: ð34Þ
The computation of the numerical source now involves four-dimensional integration. First, we use the

tensor-product of the N-point Gaussian rule to discretize the three-dimensional space integral in (23) so

that the expression for sijk reads
sijk ¼
XN
a¼1

XN
b¼1

XN
c¼1

1

Dt

Z tnþ1

tn
sðxa; yb; zc; s; qðxa; yb; zc; sÞÞds

 !
KcKbKa: ð35Þ
Then we reconstruct values and all spatial derivatives, including mixed derivatives, of q at the Gaus-

sian integration point in x–y–z space for the time level tn. Note that these points are different from

flux integration points over cell faces. The reconstruction procedure is entirely analogous to that for

the flux evaluation. Next for each Gaussian point (xa,yb,zc) we perform the Cauchy–Kowalewski pro-

cedure and replace time derivatives by space derivatives. As a result we have high-order approxima-
tions to q(xa,yb,zc,s). Finally, we carry out numerical integration in time using the Gaussian

quadrature
sijk ¼
XN
a¼1

XN
b¼1

XN
c¼1

XN
l¼1

sðxa; yb; zc; sl; qðxa; yb; zc; slÞÞKl

 !
KcKbKa: ð36Þ
The solution is advanced by one time step by updating the cell averages of the solution according to the

one-step formula (20).
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The explicit scheme considered above requires the computation of a time step Dt to be used in the con-

servative updates (2) and (20), such that stability of the numerical method is ensured. One way of choosing

Dt is
Dt ¼ Ccfl �min
ijk

Dx
jkn;xijk j

;
Dy
jkn;yijk j

;
Dz
jkn;zijk j

 !
: ð37Þ
Here kn;dijk is the speed of the fastest wave present at time level n travelling in the d direction, with d = x,y,z.

Ccfl is the CFL number and is chosen according to the linear stability condition of the scheme.

In one-space dimension linear schemes applied to the linear homogeneous advection equation with con-
stant coefficient have the optimal stability condition Ccfl 6 1 [25]. Numerical experiments indicate that the

approach has the same stability condition for nonlinear scalar equations and systems as well [19].

The linear stability analysis of ADER schemes in two- and three-space dimensions is not available yet.

Numerical experiments indicate that ADER schemes have a reduced stability condition which in fact coin-

cides with the stability condition of the unsplit Godunov scheme [5] and ENO/WENO schemes [2,16]. In

two-space dimensions the stability condition is 0 < Ccfl 6 1/2 and in three-space dimensions the stability

condition is 0 < Ccfl 6 1/3.

When the source term is present, this should also be taken into account when choosing a stable time step.
4. Numerical results

In this section we present numerical results of the state-expansion ADER schemes of up to fifth order of

accuracy as applied to scalar equations with source terms. The detailed evaluation of the flux-expansion

ADER in several space dimensions is the subject of ongoing research. These examples illustrate that the

ADER schemes can compute discontinuous solutions without oscillations and at the same time maintain
the designed very high order of accuracy in both time and space in multiple space dimensions. In all exam-

ples for flux and source term integration we use the two-point fourth-order Gaussian rule for third and

fourth-order ADER schemes and the four-point eighth-order Gaussian rule for the fifth-order ADER

scheme.

For comparisons in two-space dimensions we also run the finite-volume scheme of Shi et al. [16] with

dimension-by-dimension piecewise parabolic (r = 3) reconstruction. In the original reference [16] this

scheme uses the upwind Rusanov flux [13] as the building block and a three-point (sixth-order) Gaussian

quadrature to discretize fluxes and thus is of formal fifth order of accuracy in space. In this paper we use the
exact Riemann solver in the framework of this scheme.

In all computations below we use a fixed Courant number Ccfl = 0.45 in two-space dimensions and

Ccfl = 0.27 in three-space dimensions.

4.1. The two-dimensional inviscid Burgers� equation with a source term

We solve the two-dimensional inviscid Burgers� equation with a time-dependent source term
qt þ
1

2
q2

� �
x

þ 1

2
q2

� �
y

¼ Sðx; y; t; qÞ;

Sðx; y; t; qÞ ¼ pðq� 1Þ cos pðx� tÞ sin pðy � tÞ þ sin pðx� tÞ cos pðy � tÞ½ �
ð38Þ
with the following initial condition defined on [�1,1] · [�1,1]:
qðx; y; 0Þ ¼ q0ðx; yÞ ¼ sinðpxÞ sinðpyÞ ð39Þ
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and periodic boundary conditions. The exact solution is q(x,y, t) = q0(x � t,y � t). The cell averages of the

exact solution at the output time are computed by eighth-order Gaussian rule and are used to measure the

numerical errors of the schemes.

Table 1 shows the errors at the output time t = 1. We observe that all ADER schemes reach the design

rth order of accuracy in both L1 and L1 norms. Moreover, the error decreases by an order of magnitude
when the formal order of accuracy increases. As expected, the fifth-order ADER scheme is the most accu-

rate scheme.

The solution of this problem varies rapidly with time and thus preserving the time accuracy of the

numerical schemes is essential for obtaining the desired order of accuracy.

4.2. The three-dimensional inviscid Burgers� equation

We solve the three-dimensional inviscid Burgers’ equation
Table

Conve

CFL =

Metho

ADER

ADER

ADER

N is th
qt þ
1

2
q2

� �
x

þ 1

2
q2

� �
y

þ 1

2
q2

� �
z

¼ 0 ð40Þ
with the following initial condition defined on [�1,1] · [�1,1] · [�1,1]:
qðx; y; z; 0Þ ¼ q0ðx; y; zÞ ¼ 0:25þ sinðpxÞ sinðpyÞ sinðpzÞ ð41Þ

and periodic boundary conditions. For this test problem the exact solution is obtained by solving numer-

ically the relation q = q0(x � qt,y � qt,z�qt) for a given point (x,y,z) and time t. The cell averages of the

exact solution at the output time are computed using the eighth-order Gaussian rule.

Table 2 shows the errors at the output time t = 0.05, when the solution is still smooth. We observe that

all ADER schemes reach the design rth order of accuracy in both norms. Moreover, the error decreases by

an order of magnitude when the formal order of accuracy increases. As expected, the fifth-order scheme is

the most accurate scheme.
1

rgence study for the 2D inviscid Burgers� equation with a source term (38) with initial condition (39) at output time t = 1.

0.45 for all schemes

d N L1 error L1 order L1 error L1 order

3 10 1.90 · 10�2 3.21 · 10�2

20 2.60 · 10�3 2.87 3.99 · 10�3 3.01

40 3.43 · 10�4 2.92 4.78 · 10�4 3.06

80 4.15 · 10�5 3.05 5.90 · 10�5 3.02

160 5.11 · 10�6 3.02 7.36 · 10�6 3.00

4 10 7.00 · 10�3 3.51 · 10�3

20 1.82 · 10�4 5.26 6.62 · 10�5 5.73

40 5.53 · 10�6 5.04 2.00 · 10�6 5.05

80 1.62 · 10�7 5.10 9.40 · 10�8 4.41

160 7.59 · 10�9 4.41 5.60 · 10�9 4.07

5 10 5.46 · 10�4 4.66 · 10�4

20 2.41 · 10�5 4.50 2.69 · 10�5 4.11

40 8.86 · 10�7 4.77 8.96 · 10�7 4.91

80 2.88 · 10�8 4.95 2.81 · 10�8 5.00

160 9.08 · 10�10 4.99 8.77 · 10�10 5.00

e number of cells in each coordinate direction.



Table 2

Convergence study for the 3D inviscid Burgers� equation (40) with initial condition (41) at output time t = 0.05. CFL = 0.27 for all

schemes

Method N L1 error L1 order L1 error L1 order

ADER3 5 1.84 · 10�2 3.34 · 10�2

10 2.05 · 10�3 3.17 3.47 · 10�3 3.27

20 3.89 · 10�4 2.39 2.09 · 10�4 4.05

40 4.85 · 10�5 3.00 1.74 · 10�5 3.59

80 6.99 · 10�6 2.79 2.18 · 10�6 3.00

ADER4 5 1.90 · 10�2 2.21 · 10�2

10 1.07 · 10�3 4.14 5.82 · 10�4 5.25

20 6.64 · 10�5 4.01 2.25 · 10�5 4.70

40 5.10 · 10�6 3.70 1.27 · 10�6 4.15

80 3.07 · 10�7 4.05 8.27 · 10�8 3.94

ADER5 5 4.77 · 10�3 7.96 · 10�3

10 2.42 · 10�4 4.30 1.17 · 10�4 6.09

20 1.07 · 10�5 4.50 3.50 · 10�6 5.06

40 2.75 · 10�7 5.28 1.06 · 10�7 5.04

80 8.79 · 10�9 4.97 3.95 · 10�9 4.75

N is the number of cells in each coordinate direction.
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4.3. The kinematic frontogenesis problem

This problem [6] is a popular test in meteorology, where it models a real effect taking place in the Earth

atmosphere. From the numerical point of view it tests the ability of the schemes to handle sharp moving
fronts in two-space dimensions.

We solve the two-dimensional linear equation with variable coefficients
qt þ ðuðx; yÞqÞx þ ðvðx; yÞqÞy ¼ 0; ð42Þ
where (u,v) is a steady divergence-free velocity field:
u ¼ �yxðrÞ; v ¼ xxðrÞ; xðrÞ ¼ 1

r
UT ðrÞ; r2 ¼ x2 þ y2;

UT ðrÞ ¼ Umax sech
2ðrÞ tanhðrÞ; Umax ¼ 2:5980762:

ð43Þ
The initial distribution of q(x,y, t), defined on a square domain [�5,5] · [�5,5], is assumed to be one-
dimensional
qðx; y; 0Þ ¼ q0ðyÞ ¼ tanh
y
d

� �
; ð44Þ
where d expresses the characteristic width of the front zone. The exact solution is then given by [6]
qðx; y; tÞ ¼ q0ðy cosðxtÞ � x sinðxtÞÞ; ð45Þ

and represents the rotation of the initial distribution around the origin with variable angular velocity x(r).
We note that as time evolves the solution will eventually develop scales which will be beyond the resolution
of the computational mesh.

We first consider a smooth solution with d = 1. Table 3 shows a convergence study for cell averages at

the output time t = 4. Obviously, all ADER schemes achieve the designed order of accuracy. The size of the

error decreases as the formal order of the scheme increases. Moreover, the fourth- and fifth-order schemes

show sixth order of accuracy on fine meshes. We see that the third-order ADER3 scheme competes well



Table 3

Convergence study for the 2D linear advection equation with variable coefficients (42) with initial condition (44) and d = 1 at output

time t = 4. CFL = 0.45 for all schemes

Method N L1 error L1 order L1 error L1 order

ADER3 50 2.92 · 10�1 6.53 · 10�1

100 7.56 · 10�2 1.95 1.16 · 10�1 2.49

200 9.27 · 10�3 3.03 1.12 · 10�2 3.38

400 7.47 · 10�4 3.63 6.65 · 10�4 4.07

ADER4 50 2.04 · 10�1 3.67 · 10�1

100 2.95 · 10�2 2.79 3.95 · 10�2 3.22

200 2.63 · 10�3 3.49 2.51 · 10�3 3.98

400 3.22 · 10�5 6.35 2.57 · 10�5 6.61

ADER5 50 1.36 · 10�1 2.84 · 10�1

100 2.10 · 10�2 2.69 3.06 · 10�2 3.21

200 1.26 · 10�3 4.06 9.47 · 10�4 5.01

400 2.08 · 10�5 5.92 1.70 · 10�5 5.80

WENO [16], exact Riemann solver 50 2.87 · 10�1 6.80 · 10�1

100 7.78 · 10�2 1.88 1.23 · 10�1 2.47

200 9.82 · 10�3 2.99 1.44 · 10�2 3.10

400 1.02 · 10�3 3.27 1.86 · 10�3 2.95

N is the number of cells in each coordinate direction.
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with the WENO scheme and higher-order ADER schemes are considerably more accurate than the WENO

scheme due to their higher-order spatial and temporal accuracy.

Next we compute the numerical solution which corresponds to a discontinuous initial distribution, with

d = 10�6. At the given output time the initial discontinuity has been rotated several times and the solution

represents a discontinuous rolling surface.

Figs. 1 and 2 depict, respectively, a three-dimensional plot and contour plot of the numerical solution

obtained by the fifth-order ADER scheme. We observe that the numerical solution is essentially non-oscil-

latory with sharp resolution of all discontinuities. All parts of the discontinuous rolling surface have been
captured well. Further illustration is provided by Figs. 3–5, which show one-dimensional cuts along the y

axis for �3 6 y 6 3; results of the third-, fourth- and fifth-order schemes on the meshes of 201 · 201 cells

and 401 · 401 cells are shown. The odd number of cells is chosen so that the one-dimensional cut corre-

sponds to the center of a middle cell for both meshes. In all figures the solid line corresponds to pointwise

values of the exact solution, whereas symbols correspond to the numerical solution (cell averages). Clearly

all schemes capture all features correctly. Note also that the resolution of the discontinuities improves as the

formal order of accuracy of the scheme increases, which is more clearly shown in the finer mesh results. We

observe slight oscillations in the result of the ADER5 scheme in the y cut of q(x,y, t). These oscillations are
due to the fact that the essentially non-oscillatory reconstruction cannot find a smooth stencil on this coarse

mesh of 201 · 201 cells. Indeed, there are only four cells between discontinuities in the middle, whereas the

fourth-order polynomials used in the reconstruction need at least five cells. When the mesh is refined further

the oscillations vanish rapidly.
5. Extension to non-linear 2D systems

Finally, we would like to present some preliminary results on the possible extension of the ADER

schemes of this paper to two-dimensional non-linear systems of the form



Fig. 1. Solution of the two-dimensional linear variable-coefficient advection equation (42) with the initial condition (44) and d = 10�6

at output time t = 4 and CFL = 0.45. Method: the ADER5 scheme. Mesh of 401 · 401 cells is used.

Fig. 2. Contours of the solution of the two-dimensional linear variable-coefficient advection equation (42) with the initial condition

(44) and d = 10�6 at output time t = 4 and CFL = 0.45. Method: the ADER5 scheme. Mesh of 401 · 401 cells is used. See also Fig. 1.

208 E.F. Toro, V.A. Titarev / Journal of Computational Physics 202 (2005) 196–215



Fig. 3. One-dimensional cuts along the y axis for the two-dimensional linear variable-coefficient advection equation (42) with the initial

condition (44) and d = 10�6 at output time t = 4 and CFL = 0.45. Solid line shows pointwise values of the exact solution and symbols

show cell averages computed by the ADER3 scheme. The meshes of 201 · 201 cells (left) and 401 · 401 cells (right) are used.

Fig. 4. One-dimensional cuts along the y axis for the two-dimensional linear variable-coefficient advection equation (42) with the initial

condition (44) and d = 10�6 at output time t = 4 and CFL = 0.45. Solid line shows pointwise values of the exact solution and symbols

show cell averages computed by the ADER4 scheme. The meshes of 201 · 201 cells (left) and 401 · 401 cells (right) are used.
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Fig. 5. One-dimensional cut along the y axis for the two-dimensional linear variable-coefficient advection equation (42) with the initial

condition (44) and d = 10�6 at output time t = 4 and CFL = 0.45. Solid line shows pointwise values of the exact solution and symbols

show cell averages computed by the ADER5 scheme. The meshes of 201 · 201 cells (left) and 401 · 401 cells (right) are used.
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otQþ oxFðQÞ þ oyGðQÞ ¼ 0: ð46Þ

Similar to the two-dimensional scalar case, the scheme is written in the following one-step form:
Qnþ1
ij ¼ Qn

ij þ
Dt
Dx

ðFi�1=2;j � Fiþ1=2;jÞ þ
Dt
Dy

ðGi;j�1=2 �Gi;jþ1=2Þ; ð47Þ
where Qn
ij, Fi + 1/2, j and Gi, j + 1/2 are given by
Qn
ij ¼

1

Dx
1

Dy

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Qðx; y; tnÞdy dx; ð48Þ

Fiþ1=2;j ¼
1

Dt
1

Dy

Z yjþ1=2

yj�1=2

Z tnþ1

tn
FðQðxiþ1=2; y; sÞÞdsdy;

Gi;jþ1=2 ¼
1

Dt
1

Dx

Z xiþ1=2

xi�1=2

Z tnþ1

tn
GðQðx; yiþ1=2; sÞÞdsdx:

ð49Þ
The evaluation of the ADER numerical flux Fi + 1/2, j for non-linear systems is a straightforward extension

of the scalar one and consists of the following steps. First we discretize the spatial integrals over the cell
faces in (22) using a tensor product of a suitable Gaussian numerical quadrature. Next we reconstruct

the pointwise values of the solution and all derivatives up to order r � 1 from cell averages at the Gaussian

integration points (xi+1/2,ya,zb) by means of the dimension-by-dimension WENO reconstruction in char-

acteristic variables. After the reconstruction is carried out for each Gaussian integration point (ya,zb) at the

cell face we pose the generalised Riemann problem for the augmented non-linear system in the x-coordinate

direction (normal to the cell boundary) and obtain a high-order approximation to Q(xi+1/2,ya,zb,s). All
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steps of the solution procedure remain essentially as in the scalar two-dimensional case except that now we

apply it to a non-linear system. The ADER flux is then evaluated by inserting the approximate stateQ(xi+1/

2,ya,zb,s) into the numerical quadrature.

As an example, we implement the third-order state-expansion ADER scheme as applied to the two-

dimensional shallow-water equations, for which the vectors of conservative variables and fluxes are given by
Fig. 6.

ADER
Q ¼
h

hu

hv

0
B@

1
CA; F ¼

hu

hu2 þ 1
2
gh2

huv

0
B@

1
CA; G ¼

hv

hvu

hv2 þ 1
2
gh2

0
B@

1
CA: ð50Þ
Here u and v are, respectively, x and y components of velocity, h is the depth and g = 9.8 is acceleration due

to the gravity. For a review on the numerical methods for shallow water equations see [24].

We solve a circular dam-brake problem which corresponds to the following initial condition defined on

[�20:20] · [�20:20]:
h ¼
2:5; r6 2:5

0:5; r > 2:5

�
; u ¼ v ¼ 0; r2 ¼ x2 þ y2: ð51Þ
Here we compute the numerical solution at three output times t = 0.4, 1.4 and 4.7 on a mesh of 201 cells in

each coordinate direction. We use Ccfl = 0.45 for all runs. We compare the results of the ADER3 scheme
with a reference radial solution, which is obtained by solving numerically the one-dimensional shallow-wa-

ter equations with a geometric source term, on a very fine mesh. See Chapter 13 of [24] for details. Figs. 6–8

show a comparison between the one-dimensional reference radial solution (solid line) and the cell averages

of the two-dimensional ADER3 solution (symbols) along the radial line that is coincident with the x-axis.

We present distributions of depth h and velocity u. Additionally, Fig. 9 depicts the computed depth at the

final output time t = 4.7.
The circular dam-break problem. Computed (symbol) and reference (line) solutions of depth (left) and velocity (right) for the

3 scheme at the output time t = 0.4.



Fig. 7. The circular dam-break problem. Computed (symbol) and reference (line) solutions of depth (left) and velocity (right) for the

ADER3 scheme at the output time t = 1.4.

Fig. 8. The circular dam-break problem. Computed (symbol) and reference (line) solutions of depth (left) and velocity (right) for the

ADER3 scheme at the output time t = 4.7.
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Fig. 9. The circular dam-break problem. Depth h at the output time t = 4.7.
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A detailed numerical study of this problem for a sequence of output times is given in Chapter 13 of [24].

At time time t = 0.4, see Fig. 6, the solution contains an outward-propagating circular shock wave and an

inward-propagation rarefaction wave which is about to reach the origin. By the time t = 1.4, see Fig. 7, the

rarefaction has reflected from the origin and has overexpanded the flow to the point that the depth has fall-

en well below the ambient depth initially outside the circular dam. A secondary circular shock is then

formed, which is more clearly seen in the velocity profile. This shock propagates inwards and at the final

time t = 4.7 it has reflected from the centre and is propagating outwards.

We observe that the ADER3 scheme produces the correct flow pattern for all output times. A complex
process of implosion of the circular shock in the center and formation of a reflected outward-moving cir-

cular shock does not lead to the generation of oscillations in the numerical solution. Overall representation

of shocks is quite sharp, with only two to three cells across them.

Our numerical experiments show that in two-space dimensions the third-order ADER schemes are faster

than the finite-volume WENO scheme roughly by a factor of 2. Additionally, ADER can typically take lar-

ger time steps in practical computations, usually by a factor of 2, which increases the difference in efficiency.

Concerning the memory requirements we note that the ADER schemes of any order effectively need only

two global arrays to store the vector of the conservative variables and the total sum of fluxes. This should
be compared with the WENO schemes which need at least three arrays to store the data from stages of the

TVD Runge–Kutta method. Also note that expensive memory transfer may be needed for the RK method

to use only these three arrays.

Remark: It should be noted that in general finite-difference high-order schemes [7,1] are faster than the

corresponding finite-volume schemes of the same spatial order of accuracy. For example, in two-space

dimensions for spatially fifth-order WENO schemes the difference in efficiency is by a factor between three

and four, depending on the computer and compiler used. However, the finite-difference schemes can only be

applied on smooth structured meshes, whereas finite-volume schemes can be used on arbitrary unstructured
non-uniform meshes. See e.g. [9,16] for finite-volume WENO schemes on triangular meshes.
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6. Conclusions

The design of nonlinear ADER schemes of upto fifth order in both time and space as applied to scalar

linear and nonlinear advection–reaction equations has been presented. The numerical results for the linear

advection equation with variable coefficients and for the inviscid Burgers� equation with a time-dependent
source term suggest that for smooth solutions the schemes retain the designed order of accuracy for realistic

CFL numbers. When the solution is discontinuous the schemes produce essentially non-oscillatory results

and sharp resolution of discontinuities. The extension to nonlinear hyperbolic systems in 2D and 3D is the

subject of ongoing research. As shown here, preliminary results for two-dimensional shallow-water equa-

tions look promising.
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